

Variable Damage Effects in Naval Wargames

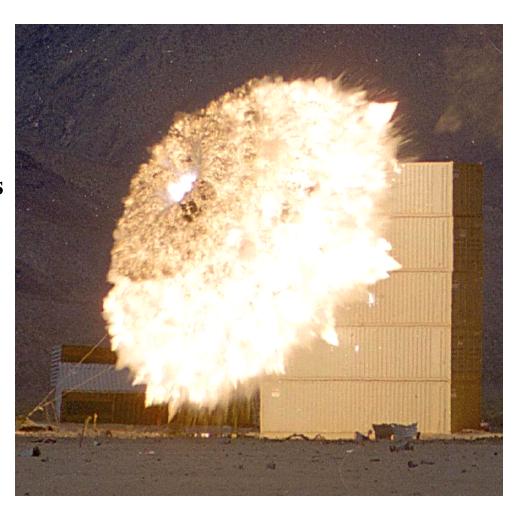
Christopher Carlson
Cold Wars 2008

Admiralty Trilogy Seminar

Presented by:

Clash of Arms Games

Outline


- What is damage?
- Damage modeling philosophies
- Drivers in damage variability
- Modified AT fire and flooding critical hits
- Modified AT damage control
- Ship damage control capacity
- Conclusions

Weapon Damage Mechanisms

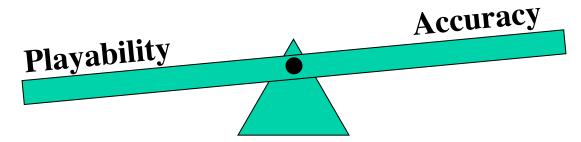
- Explosives Basis for damage mechanisms
 - Rapid conversion of chemical potential energy into heat, smoke, noise and kinetic effects
- Blast Effects
 - Formation of a shock or high pressure wave
- Fragmentation Effects
 - Breakup and acceleration of case material
- Incendiary Effects
 - Generates a lot of heat

DallPully Pricory

What is Damage?

- Damage is the result of explosive effects that causes a degradation in a ship's functions and/or seaworthiness
- Degradation to a ship's functions
 - Propulsion Movement
 - Sensors Detection
 - Weapons Attack/Engage
- Degradation to a ship's seaworthiness
 - Loss of flotation
 - Loss of stability
- How do we "measure" damage?
 - Mobility kill
 - Firepower kill
 - Mission kill
 - Hard kill

- The approaches to modeling damage are numerous and varied
- Fred T. Jane abandoned any attempt to objectively model damage in his naval game, left the determination to a knowledgeable Umpire – completely subjective
- ◆ U.S. Naval War College Fire and Maneuver Rules adopted a totally objective approach by using the Lanchester Attrition mathematical equation
- The majority of naval wargames attempts to define a damage capacity for ships based on size and construction
 - Hybrid subjective/objective approach



- Royal Navy War Game Rules 1929 and the popular Fletcher-Pratt Naval Wargame use a gradual degradation approach
 - Damage capacity is defined point system
 - Speed lost as a function of overall damage
 - Firepower lost as a function of damage
 - Often referred to as the "Salami slice" approach to damage
- ◆ Battle Stations! used two concepts: gradual degradation and location/system specific (Damage Effects Cards)
 - Firepower, flotation, and speed degrades gradually using the Non-Specific Hit Method
 - Firepower, flotation, and speed degrade by means of a critical hit and hit location concept in the Specific Hit Method

- Seekrieg uses an in depth damage effects approach to simulate ship function and flotation degradation
 - Uses damage points as a measure of ship damage capacity
 - Uses nested damage effects die rolls and tables
 - Hit location specific
- **♦** Admiralty Trilogy naval wargames
 - Uses damage points as a measure of ship damage capacity
 - Uses critical hit system to provide random elements
 - Minimizes the use of hit location

- Damage is perhaps the hardest concept of combat to model
 - Detection very well documented, considerable experimentation
 - Hitting reasonably well documented, good base of experimentation
 - Damage not well documented, limited experimentation
 - Many exceptions to the "rule"
 - Modeling approach depends on where you sit on the see-saw
- Models are a representation of a real object or process
 - Compromises are nearly always required to get one to work
- "All models are wrong. Some models are useful."
 - Mr. George Box

Level of Variability in Damage Models

- Jane's Naval Game Very high variability, inconsistent
- U.S. Navy Fire and Maneuver Rules No variability
- Royal Navy War Game Rules 1929 No variability
- Fletcher-Pratt Naval Wargame No variability
- Battle Stations! No variability/High variability
- Seekrieg High variability
- Admiralty Trilogy Low variability
- CONUNDRUM: Players want speed of play, accuracy, and high variability

Damage Variability Drivers

Hit location

- Multiple hits in the same place doesn't result in equal degradation, "bouncing the rubble"
- Will slow game play

Variations in warhead performance

- Often described as the best way to obtain damage variability
- Problem: Damage effects are not linear
 - 50% loading detonation results in nearly 80% of the damage effects
 - Greater than 100% damage effects result due to "other factors"

Secondary effects

- Fire and flooding are the two main actors
- Function reducing critical hits
- Historically this is where variability comes into play

Current AT Damage Variability

- Weapon damage has been a fixed value based on warhead weight
 - Critical hit system provided specific function degradation
 - Additional speed reductions through general ship damage
 - Fire and flooding provide the extra effects
- The issue with players is that our system isn't very variable
 - Fire and flooding occurs in fixed intervals
 - Minor Fire/Flooding: 2%/3%/4% of ship's original DPs
 - Major Fire/Flooding: 4%/6%/8% of ship's original DPs
 - Severe Fire/Flooding: 6%/9%/12% of ship's original DPs
- Damage control results in a step reduction (or increase)
- Catastrophic loss if fire and flooding gets too high

Revised AT Damage Variability

- Damage points based on total energy raised to the 1/3 power
 - Blast Energy
 - Fragmentation kinetic energy
 - Kinetic energy of residual mass for missiles
 - Will remain a fixed value
- Fire and flooding critical hits will be shifted to a die roll
 - Pre-dreadnought era (≤1907): 2d6+2
 - World War I era (1908-1924): 1d6+2
 - World War II Modern (≥1925): 1d6
- Non-penetrating fire and flooding damage is halved
- ◆ Fire and flooding damage cause by small guns (<76mm) is halved</p>

Revised AT Damage Variability

- Shellfire and bombs: Fire and flooding critical hit damage goes into effect three Tactical Turns later
 - Takes time for the fire and flooding to spread beyond the immediate affected area
 - WET showed that it takes about 9 to 12 minutes for a fire to fully develop
 - Flooding, even through a large caliber shell hole, takes time to affect the ship's stability
 - Effects are not made public introduces a little "Fog of War"
- Torpedo and mines: Flooding critical hit damage goes into effect immediately
 - Multiple compartments are flooded when the torpedo/mine warhead explodes
 - Ship stability is affected instantly

Damage Control

- Additional variability is being introduced by making the damage control procedure a die roll as well
- Success depends on how badly the ship's damage control cadre is stressed
 - Larger ships can handle more secondary damage
 - U.S. WWII DD had 35-40 highly trained DC personnel (3 teams)
 - U.S. WWII BB had 35-40 trained men *per* team (6 teams)
 - Clarifies how nearby ships can lend assistance
- The terms "Minor," "Major," "Severe," and "Overloaded" now refer to the overall load on the damage control teams

Severity Conditions

Size	Minor	Major	Severe	Overwhelmed
Class				
A	1-10%	11-15%	16-17%	≥18%
В	1-10%	11-15%	16-17%	≥18%
С	1-8%	9-12%	13-14%	≥15%
D	1-8%	9-12%	13-14%	≥15%
Е	1-6%	7-10%	11-12%	≥13%
F	1-6%	7-10%	11-12%	≥13%
G	1-6%	7-10%	11-12%	≥13%

Modified by era range of values: -2% to +2%

Damage Control Die Roll

Die Roll	Minor	Major	Severe	Overwhelmed
1	-2d6%	-2d6%	-2d6%	-1d6%
2	-2d6%	-2d6%	-1d6%	-1d6%
3	-2d6%	-1d6%	-1d6%	-1d6%
4	-1d6%	-1d6%	-1d6%	No Change
5	-1d6%	-1d6%	No Change	No Change
6	-1d6%	No Change	No Change	+1d6%
7	No Change	No Change	+1d6%	+1d6%
8	No Change	+1d6%	+1d6%	+1d6%
9	+1d6%	+1d6%	+1d6%	+2d6%
10	+1d6%	+1d6%	+2d6%	+2d6%

Damage Control Odds & Ends

- Fire and flooding damage control die rolls are resolved separately
- A ship can temporarily increase its damage control capacity, by one half of its Minor value, at the expense of combat capability
- Other ships can lend support to reduce the Severity
 Condition up to half of their Minor capacity
- If either fire or flooding place a ship in an overwhelmed Severity Condition can lead to catastrophic loss
- Overall Critical Hit table being modified to take into account space allocation
 - More likely to get engineering hit vice rudder or bridge hit

ANIMALTY TRACOP

Example

- **♦** USS *Lexington* hit by several bombs and torpedoes
 - Secondary fire damage: 16%
 - Secondary flooding damage: 8%
 - Total = 24% and exceeds the ship's Overwhelmed status
- Actions by CO
 - Commits deck crew to DC efforts: +5%
 - Two DD's come alongside to assist: +4% each
- Severity condition decreases to Major
 - -24% 5% 8% = 11%
 - Lexington is in a good position to combat the casualties

Conclusion

- Damage variability is a high interest item for players
 - Variability drivers: Location, warhead performance, secondary effects
 - Admiralty Trilogy games don't use specific hit locations
 - Warhead performance variability isn't realistic
 - Secondary effects the best option for our games
- Damage effects are very difficult to model
 - Significant tension between playability and accuracy
- Revised model gives greater variability in fire and flooding critical hits and in the DC die rolls
- Delayed implementation of some critical hit results means ships aren't instantaneously crippled